

Brookhaven, Dec 4, 2014

Brighter / fatter effect in DECam

Daniel Gruen LMU Munich

with Gary Bernstein, Mike Jarvis, Barnaby Rowe, Stella Seitz, Vinu Vikram and others

PACCD 2014

Agenda

- DECam and DES
 - status update
 - brighter/fatter phenomenology
- Charge deflection model
 - Introduction
 - DECam measurement and model
 - Effects on galaxy shape measurement / Weak Lensing
 - Correction
- Summary

The Dark Energy Camera:

Overview

 62 science CCDs, LBNL, 2k x 4k, 250µm thick

 good QE over wide wavelength range

- 3 sq. deg. FOV
- at prime focus of Blanco 4m / CTIO

T. Abbott & CTIO/NOAO/AURA/NSF

The Dark Energy Survey

- 5000 sq. deg. survey in grizY, 5 years, ~300 scientists, 28 institutions
- Primary goal: dark energy eqn. of state
- Probes:
 - Clusters of galaxies
 - Galaxy 2-point / BAO
 - Supernovae
 - Weak lensing
- First science results out, more to come soon!

The Dark Energy Camera: Precision astronomy relevant CCD/Amp effects

 Flat field non-linearity amplifiers few % nonlinear over the non-

saturated dynamic range

Glowing edges

increase in effective pixel area at border

Tape bumps

physical deformation at position of double-sided tape distorts electric fields

Tree rings

astrometric pattern due to circularly symmetric gradient of resistance

Brighter/fatter effect

Andres Plazas+2014. shown at PACCD 2013

Brighter/fatter phenomenology: PSF size increases isotropically with flux

It's linear in flux, it's not the flat nonlinearity, it's independent of t_{exp} , it's not (just) diffusion

Model introduction:

charge-induced shift of effective pixel borders

 Antilogus et al., PACCD 2013 arXiv:1402.0725

$$\delta^X_{ij} = \sum_{kl} a^X_{k-i,l-j} \times q_{kl}$$
 shift charge in parameters pixel kl

Change in flux:

$$\delta_{0,0}^R imes rac{q_{0,0} + q_{1,0}}{2}$$
 (plus other sides)

Model introduction: symmetries reduce model parameters

These are lots of parameters, but a priori we expect...

$$a_{ij}^L = -a_{i+1,j}^R \qquad a_{i,j}^{0,\pm 1} = a_{-i,j}^{0,\pm 1}$$

$$a_{i,i}^B = -a_{i,i+1}^T$$

$$a_{i,j}^{0,\pm 1} = a_{-i,j}^{0,\pm 1}$$

$$a_{ij}^B = -a_{i,j+1}^T$$
 $a_{i,j}^{\pm 1,0} = a_{i,-j}^{\pm 1,0}$

$$a_{i,j}^{0,\pm 1} = -a_{i,\pm 1-j}^{0,\pm 1}$$

$$a_{i,j}^{\pm 1,0} = -a_{\pm 1-i,j}^{\pm 1,0}$$

Model introduction: connection to flat-field covariances

shift parameters are constrained by pixel-to-pixel covariances in flat field*

$$\begin{aligned} \text{cov}(Q_{00},Q_{ij}) &= 2 \overleftarrow{V\mu} \sum_{\substack{\text{flux}^2 \, X = T,B,L,R}} a_{ij}^X \\ \text{dependence} \end{aligned}$$

* with a few issues I'll talk about in a minute

Daniel Gruen PACCD 2014

DECam measurements: flat field pixel-to-pixel covariances

- Data: full season of r band dome flats: 1200 frames, 6x10¹¹pix, 4x10¹⁶γ
- Lots of consistenty checks
- Covariances with S/N~15 at r~10pix
- Power-law behaviour with different amplitude for onaxis pixels
- Outlier: neighbour along readout factor ~ 5 low

DECam measurements: chip-to-chip variation

- Covariance levels differ by ~20% between different chips
- Levels correlate within CCD production lots
- Origin unknown

DECam model:

from covariances to shift coefficients

 Covariances do not uniquely constrain coefficients without further assumptions

We make these two:

$$a^R_{ij} = a^T_{ji}$$
 for off-axis pixels >1 away

$$a_{j,i}^R = r(i,j) a_{i,j}^R$$
 same force, corrected for projection

- → Linear relation of a and Cov
 - directly measured covariances + power-law extrapolation

DECam model: shift coefficients of individual chips

Effect on galaxy shape measurement:

Galaxies: Intrinsic galaxy shapes to measured image:

Stars: Point sources to star images:

Daniel Gruen PACCD 2014

Source: Bridle et al. 2009

Effect on galaxy shape measurement: Image simulation with GalSim

 Implementation of Antilogus+2014 model in CDModel module of GalSim (Rowe+2014)

https://github.com/GalSim-developers/GalSim/

- simulations with mean DECam model and
 - star images with 15k ADU peak flux as PSF model
 - faint galaxies with no background / no noise
 - seeing FWHM 0.9", intrinsic galaxy FWHM 0.5"

$$\begin{pmatrix} \epsilon_1^{\text{meas}} - \epsilon_1^{\text{true}} \\ \epsilon_2^{\text{meas}} - \epsilon_2^{\text{true}} \end{pmatrix} = \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix} + \begin{pmatrix} p_1^1 \epsilon_1^p \\ p_2^2 \epsilon_2^p \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix} + \begin{pmatrix} p_1^1 \epsilon_1^p \\ p_2^2 \epsilon_2^p \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

$$= \begin{pmatrix} m_1 \epsilon_1^{\text{true}} + c_1 \\ m_2 \epsilon_2^{\text{true}} + c_2 \end{pmatrix}$$

Effect on galaxy shape measurement: multiplicative shape bias

settings	$m[10^{-2}]$	$c_1[10^{-3}]$	$p_1^1[10^{-2}]$	$p_2^2[10^{-2}]$
fiducial	/2.4	-0.5	-0.6	-0.7
$FHWM_{PSF} = 0.7''$	1.7	-0.5	-0.4	-0.5
$FHWM_{PSF} = 1.1''$	3.1	-0.5	-0.8	-0.9
$FHWM_{gal} = 0.3''$	6.9	(-1.4)	-1.7	-2.0
$\text{FHWM}_{\text{gal}} = 0.7''$	1.1	-0.3	-0.3	-0.3
500 ADU background	2.2	-0.5	-0.6	-0.7
symmetric $a_{ij}^T := a_{ji}^R$	$\langle 2.5 \rangle$	0.0	-0.6	-0.7
corrected out to $\Delta = 5$	0.0	0.0	0.0	0.0

Systematic error budget (DES)

0.4 0.4

 Primary effect is a multiplicative bias that exceeds DES requirements

Solution: pixel level correction

Solution: pixel level correction

Solution: pixel level correction

 Σ (residual, corrected)²/ Σ (residual, uncorrected)² = 0.045

Summary

Charge self-interaction in DECam causes per-cent level systematics in weak lensing

Characterization and correction of effect

- using Antilogus+2014 model
- measurements on full season of flat data
- model fit per CCD
- pixel-level correction

Backup

DECam measurements: consistency checks

Covariance measurements consistent between

- mean and median
- rotated lags
- amplifiers / halves of chips
- months of the DES season

